(H)=-162t^2+32t+48

Simple and best practice solution for (H)=-162t^2+32t+48 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (H)=-162t^2+32t+48 equation:



()=-162H^2+32H+48
We move all terms to the left:
()-(-162H^2+32H+48)=0
We add all the numbers together, and all the variables
-(-162H^2+32H+48)=0
We get rid of parentheses
162H^2-32H-48=0
a = 162; b = -32; c = -48;
Δ = b2-4ac
Δ = -322-4·162·(-48)
Δ = 32128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32128}=\sqrt{64*502}=\sqrt{64}*\sqrt{502}=8\sqrt{502}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{502}}{2*162}=\frac{32-8\sqrt{502}}{324} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{502}}{2*162}=\frac{32+8\sqrt{502}}{324} $

See similar equations:

| 924=21d | | 5/x=100/80 | | 20x+9=18x+3 | | 10+2n=-8n-2n+10 | | u-301=277 | | 7=3y-4,25 | | 36+5x=-8(1-2x) | | 3/8x=26 | | 5w/2=-20 | | 3(-5+5p)=-105 | | 21q=357 | | 94=5x+40 | | 54-3f=32f=9 | | 12= −18+6b | | (10x+6)=(6x+14) | | 40=4s | | v+577=706 | | 5^7a=84 | | 13.69+0.09c=14.44+0.14c | | -1.5(6x+4)=21 | | -4n-3=-2n-2 | | 0.5(4x-6)=15 | | 13=r+9 | | 985=g+485 | | 8x-20(x=-4 | | w2=-100 | | 2x+4.5=12.9 | | 3x+4x-3x-4x+6x-4x=1/50(100x+100) | | 999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999x99999999999999999999999999999999999999999999999999999999999999999999 | | r-r+2r-2=18 | | 5x-3x-12;x=5 | | f+19=36 |

Equations solver categories